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BAYESIAN PREDICTION OF MEAN SQUARE ERRORS WITH

COVARIATES

by P. A. Jacobs and D. P. Gaver

1. INTRODUCTION AND SUMMARY

Numerical meteorological models are used to assist in the prediction of

weather. Each run of a numerical model produces forecasts of meteorological

variables which are used as preliminary predictions of future values of these

variables. These initial predictions are referred to as first-guess values. In

this paper first-guess values will refer to the most recent 12-hour forecasts.

In certain areas of the world, observations of forecasted variables become

available. Prior to the next run of the numerical model a multivariate

optimal interpolation analysis updates a first-guess value of a variable by

adding to it a weighted observed value of the variable if it is available. The

weight multiplying the observed value depends on estimates of the mean

squared error of the first-guess value and the mean squared error of the

observation; cf. Goerss et al., [1991, a, b]. Thus it is of importance to predict

such first-guess squared errors.

The general problem of modeling and predicting mean square errors is

important but not widely studied; see Davidian and Carroll (1987), Nelder and

Lee (1992), Aitken (1987), McCullagh and Nelder (1983).

In Jacobs and Gaver (1991, 1992) statistical models for the error of the first-

guess are used to predict mean square error for first-guess wind components.

The models assume that the error of the first-guess is normal with mean



and variance which is a function that is log-linear with suitable covariates.

The cross-validation results of those papers suggest that covariates do have

some predictive ability for the mean square errors. However, the relations

change over time.

In this paper we introduce a procedure for recursively updating the

estimated parameters of the variance function. The approach is Bayesian

with recursive updating using an approximation based on the Laplace

method; cf. deBruijn (1958).

In the next section the model is introduced. Details of the updating

procedure are also given.

The third section presents results of using the procedure to predict mean

square first-guess wind component errors. The data consist of measurement

and 12 hour forecasts (first-guess values) of u and v wind components at 850

mb, 500 mb, and 250 mb pressure levels from 93 stations in North America,

25N-75N. The measurement values (if available) are subtracted from the

first-guess values to obtain observations of the first guess error. The

covariates considered are wind speed and resultant wind, (the sum of the

squared difference of the w~wind component at two consecutive 12 hour

periods and the squared difference of the v-w'md component at the same

times). The resultant wind is a measure of the change in the atmosphere.

Higher wind speeds suggest more activity in the atmosphere.

The results of the data analysis suggest that the covariates do have

predictive ability. The models using observed wind speed and resultant wind

have more predictive ability than those using the first-guess values of wind

speed and resultant wind. Further, models that use both wind speed and



resultant wind have more predictive ability than those using either one by

itself. The change of the model parameters with time appears to be slow.

This suggests that while the relationship of the mean square error and the

resultant wind and wind speed is changing, it may not be necessary to update

the model parameters in every period.

2. THE MODEL AND STATISTICAL PROCEDURE

Let Y,-(0 denote the first-guess error at location i at time t; i = 1, ..., L. Let

Xj(0 = (xij(t); j = I, ..., p) denote the covariates at location i at time t.

Consider the following model for the first-guess errors.
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where x;(Op(0 = X-=i**;M0/'(O/ that is ' given (MO, the first-guess errors are

conditionally independent normally distributed with mean and log linear

variances

o?(0 = exp{x
f (0P(0} (2-2)

independent of everything else.

The coefficients (3(0 are modeled as changing according to a random walk

P(f + l) = P(f)+»(' + !) <2 -3 )

where {co(0} are independent multivariate normal random variables with

variance-covariance matrices [W(t)). The matrix W(t+1) is independent of

{Yi(s),xi(s),$(s),s<t i = l,...,L}



In the next subsection we suggest a Kalman filter-like procedure to

produce successive estimates of p(0 as new data become available. The

procedure is based on a Laplace approximation to an integral.

2.1 An approximate Updating Procedure

Assume the posterior distribution of (3(0 given [yi(s), i - 1, ..., L, s <t) is

multivariate normal with mean m(t) and variance-covariance matrix L(0-

Since it is known that

p(r+l) = p(r) + co(r+l),

the prior distribution of p(£+l) is multivariate normal with mean m(0 and

variance-covariance matrix

R(0 = 1(f) + W(f+1) . (2.4)

A description of the procedure used to determine W(f+1) appears in Section 3.

The forecast/ prediction distribution of {Y,(f+1); i = 1, ..., L} in terms of data

up to time t and covariate values at time t +1 is
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i
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L
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1)(l>) = ((2*)" del R(t))~ 2 exp{-i(b - m(f))R-'(t)(b - m(())'l. (2.6)



We now approximate the integral by the Laplace method; cf. Easton

(1991), Cox and Hinkley (1974), de Bruijn (1958). Let the exponent of the

integrand be

8(*) = -\ £(x
f
b) + yf exp{-X|-b} + (b - m(f))R-1

(f )(b - m(0)' + K (2.7)

where K is a constant and we let x, = x/(r+l). Differentiating, we obtain

L
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Use a Newton procedure to solve the system of equations

° =
df

g{h) j
= 1 P (2.10)

for m(f+l). Solve for E(t+1) using the second derivatives of g evaluated at

m(f+l); that is Z(t+1) is minus the inverse of the matrix whose (/, k) entry is

dbjdb^
g(m(t + l)). (2.11)

The posterior distribution of p(f+l) given {Yi(s), x,(s), i = 1, ..., L, s = 1, ..., f+1} is

approximated by a multivariate normal distribution with mean m(t+l) and

variance £(f+l). The estimate of p(f+l) is m(f+l).

The predicted mean square error for the ith location at time t+2 is



exp
V

3. DATA ANALYSIS

In this subsection we report results concerning using regression-like

models for the mean square error of the first-guess with recursively updated

parameter estimates to predict future mean-square errors of the first-guess.

The data consist of measurement and 12 hour forecasts (first-guess

values) of u and v wind components at the 850 mb, 500 mb and 250 mb

pressure levels from 93 stations in North America 25N-75N for the month of

July 1991. The forecasts are produced using the NOGAPS Spectral Forecast

Model; cf. Hogan et al., (1991). Each station has measurement and first-guess

values for every 12 hours; there are some missing observations and

suspicious values of wind components equal to 0. These missing and

questionable values are deleted from the data set. The measurement values

(if available) are subtracted from the first-guess values to obtain observations

of the error of the first-guess value.

Let U(0;t), (respectively V(0;t)), be the observed w-wind, (respectively

p-wind) component at time t. Let U(f;t), (respectively V(f;t)), be the first-guess

w-wind (respectively u-wind) component at time t; U(f;t) is the forecasted

value of 1/(0 made 12 hours previously. The first-guess error for the w-wind

component is

Y(t) = U(f;t) - U(0;t). (3.1)

The following covariates are considered in the log-linear model for the mean

square error of the first-guess.



r(0;0 = (U(0;0 - U(0;t- 1))

2
+ (V(0;t) - V(Q;t- l)f (3.2)

s(0;f) = U(0;t)
2
+V{0;t)

:

(3.3)

'(/;')= (w(/;0-u(/;f-i))
2
+(v(/;f)-v(/;f-i))

:

(3.4)

s(/;f)=: U{f;t)
2
+ V(f;t)

2
(3.5)

The resultant wind r(0;f), (respectively r(/;0), is a measure of the observed

(respectively forecasted), change in the wind. The variable s(0;f), (respectively

s(/;0), is the observed, (respectively forecasted), wind speed. Higher wind

speeds suggest more activity in the atmosphere.

3.1 The Models

The following models for the mean square error are considered

One Variable Models: Observed Covariates

1. Given /?o(0, Pitt), the first-guess errors at each location [Yjtt); i = 1,.-., L}

are independent normally distributed with mean 0. The variance of

Y{(t) is the following function of the observed resultant wind at

location i at time t, r/(0;f)

Oi(l;f;ri(0;t;) = exp{j3 (0 + £l(Or z (0;O} (3.6)

where rf(0;f) is the observed resultant wind at location i at time t and
Y{(t) is the first-guess error at location i at time t.

Given (3o(t), (3\(t), {Y,-(0; i = 1, •••/ ^} are independent normally

distributed with mean 0. The variance of Yj(t) is the following

function of the observed wind speed at location i at time t, s
z
(0;f)



ol(l;l; Sl(0;t)) = exp{j3 (0 + Pl(t)si(0;t)} (3.7)

where s;(0;f) is the observed wind speed at location i at time t.

Two-variable Model, Observed Covariates

3. Given po(t), p\(t), feit), {Yf(0; i = 1, •••, L) are independent normally
distributed with mean 0. The variance of Y{(t) is the following function

of both the resultant wind and wind speed at location i at time t

G2(t; n(0;t); Si(0;t)) = exp{#)(0 + f3\(t)ri(0;t) + (32(Os z(0;0}. (3.8)

Similar one-variable and two-variable models but using first-guess values of

the covariates are also considered. In all cases the first-guess error and the

covariates are all evaluated at the same pressure level.

The regression parameters (3(0 are assumed to evolve according to the

random walk given by (2.3)

3.2 The Data Analysis

The results of Jacobs and Gaver (1992) suggest that of the models using

observed values for covariates, the models for the 850 mb pressure level have

the most predictive value. It is also suggested that of the models using first-

guess values for covariates, the models for the 250 mb pressure level have the

most predictive ability. As a result in what follows we will restrict our

attention to these two cases.

a. Estimation and Prediction of 850 mb First-guess Mean Square Errors using

Observed Wind Covariates.

The estimation procedure described in Section 2 was used to recursively

estimate the regression parameters p(0 for each of models (3.6) - (3.8) for 850

mb first-guess errors using observed 850 mb wind covariates. The initializing

estimates of p(0 are the estimates obtained using all April data recorded in

8



Jacobs and Gaver (1992); the initial variance-covariance matrix is the identity

matrix. The estimates from April are used since April appeared to have more

predictive ability for July than February, cf. Jacobs and Gaver (1992).

The variance-covariance matrix of the innovation W
t of the random

walk (2.3) was taken to be a constant times the identity matrix. Preliminary

explorations based on values of the predictive log-likelihood using different

values of the constant suggest that for purposes of prediction, the constant

should be very small. In what follows we set the constant equal to 0.

Figure 1, (respectively Figure 2) presents plots of the estimates of the

slopes, e.g., pi(t) and fait), as a function of time which is labeled 1, 2, .... for u-

wind (respectively p-wind) component error.

Figure 1 presents the values of estimates of the parameter multiplying

r{(0;t) (respectively S{(0;t)) for the one parameter models (3.6) and (3.7) in the

upper graph. The lower graph presents the values of the estimates of the

parameter multiplying ri(0;t), (respectively S{(0;t)) for the two-variate model.

There appears to be a slight trend in the estimates.

Figure 2 presents the values of the estimate of the parameters multiplying

r{(0;t), (respectively si(0;t)) as o, (respectively +), for the respective one-variate

models. The values of the estimates of the parameters multiplying r{(0;t),

(respectively S{(0;t)) for the two-variate model are presented as x (respectively

V) for each time t. These graphs suggest more evidence of a trend in the

estimates. Note that the estimates of the slopes are positive. Hence increased

values of the resultant wind r{(0;t) and/or wind speed Si(0;t) are associated

with increased variance of the first-guess value. This is plausible physically,



since a large value of rj(0;t) is indicative of a change in the atmosphere and a

large value of Sj(0;t) is indicative of greater activity in the atmosphere.

To assess the predictive ability of the models, the models with parameters

estimated at time t are used to forecast the variances of the first-guess errors at

time M-l.

One procedure to informally assess the predictive ability of the models is

by binning the data. To assess models (3.6) and (3.8) the data (y,(0, r;(0;0,

Sj(0;O) are binned into 10 bins based on ordering the values of r,(0;0 for all

time t from smallest to largest. The data in the first bin correspond to the

smallest values of rf(0;0; the data in the 10th bin correspond to the largest

values of r,-(0;f). Each bin contains about l/10th of the data with the 10th bin

containing a few more data. The averages of the predictive variances for

models (3.6) and (3.8) are computed for each bin. The average yi(t)
2 is also

computed for each bin.

To assess models (3.7) and (3.8) the same procedure is used but the

binning is based on the values of Sj(0;t).

Figures 3 and 4 present graphs of the log[average x/i(t)
2
] in each bin versus

log [average predictive variance] in each bin for models (3.6) and (3.8) and

models (3.7) and (3.8). If a model were perfect, the points should be close to

the 45° line shown.

The figures suggest that of the two one-variate models, the one using the

resultant wind ri(0;t) has the better predictive ability. The two-variate model

appears to have similar predictive ability to the model using only r{(0;t).

Another procedure to assess predictive ability is to compute the log-

likelihood using estimated values of (3(0 (eg. m(0) in the term for the first

10



guess errors at time t+1. Larger values of the (predictive) log-likelihood

indicate better predictive ability. The (predictive) log-likelihood up to

addition and multiplication by constants is

(3.9)T-\

'=-1
f=]

Xx.U + lMO + X^^ + Dexpl-x^r + lMO}
«=i <=i

Table 1 presents values of / for the one-time step ahead predictions of the

variance; these values appear in the column Iterative. Also displayed are the

values of / obtained by estimating the parameters once using all the data; this

value of / is a goodness-of-fit value and appears in the column labeled All;

the estimates used to obtain the goodness-of-fit value of / are those appearing

for July in Table 7 of Jacobs and Gaver (1992).

Four models are considered: constant variance (no dependence on

variables), two one-variate models (3.6) and (3.7) and the two-variate model

(3.8). The parameter of the constant variance model using all the data is

estimated using maximum likelihood; this estimate is used to calculate the

goodness-of-fit value of / for the constant variance model.

The goodness-of-fit constant variance value of / is smaller than the

prediction values of / using models with covariates. This behavior indicates

that the covariates do have predictive ability. The prediction value of / for

the two-variate prediction model is larger than that for either one-variate

model indicating that both covariates have some predictive ability. Of the

two one-variate models, the one using rj(0;t) has the larger prediction value

of /. The closeness of the prediction values of / obtained by iteratively

updating the estimates and using them to predict variance of the next time

period and the goodness-of-fit values of / obtained by using model

11



parameters estimated from all the data suggest that the updating procedure is

doing very well. Note that for the one-variate model using rtfOjt), the

prediction values of / are larger than the goodness-of-fit values of /; this

suggests that there is systematic change in the values of p over time for this

model.

TABLE 1

VALUE OF LOG-LIKELIHOOD OBSERVED COVARIATES, 850 mb

Data Model Iterative All

(Prediction) (Goodness-of-Fit)

w-wind Constant Variance

One-variate

-9610.7 -9510.0

r(0;0 -8544.1 -9098.3

s(0;0 -8607.9 -8596.2

Two-variate -8489.2 -8467.5

i>-wind Constant Variance

One-variate

-9692.7 -9620.2

r(0;t) -8730.9 -9294.1

s(0;t) -8769.2 -8756.5

Two-variate -8663.8 -8652.4

b. Estimation and Prediction of First-guess Mean Square Errors using First-

guess Wind Covariates

The recursive estimation procedure in Section 2 was used to estimate the

regression parameters p(0 for each of models (3.6) - (3.8) for 250 mb first-guess

errors using first-guess 250 mb wind covariates; that is, the first-guess wind

speed at location i at time t at the 250 mb level, Sj(f;t) replaces Sj(0;t), etc. The

initializing estimates of p(f) are the estimates obtained using all April data

recorded in Jacobs and Gaver (1992); the initial variance-covariance matrix is

the identity matrix. The estimates from April are used since April appears to

have somewhat more predictive ability than February for July; Jacobs and

Gaver (1992).

12



Once again, preliminary exploratory work using the resulting value of the

predictive log-likelihood indicates that setting the variance-covariance matrix

of the innovation of the random walk equal to gives the best predictions.

This suggests that the change in the relationship of the mean square error and

the covariates is slow.

Figure 4, (respectively Figure 5) presents plots of the values of the

estimates for the 250 mb w-wind component errors and the 250 mb z^-wind

component errors. The values of the estimates multiplying r(f;t),

(respectively s(/;0) are represented by o, (respectively +) for the one-variate

models. For the two-variate model, the estimates multiplying r(f;t),

(respectively s(f;t)) are presented as x, (respectively V). The figures suggest

evidence of a trend in the estimates. Note that once again all the estimates

are positive. Thus, increased first-guess resultant wind and/or wind speed

tends to increase the mean square error

To assess the predictive ability of the models, the models with parameters

estimated at time t are used to forecast the variances of the first-guess errors at

time t+1.

One procedure to informally assess the predictive ability of the models is

by binning the data. The data are binned as in the previous subsection.

Figures 7 and 8 present graphs of the log [average yj(t) 2 ] in each bin versus log

[average predicted variance] in each bin for models (3.6) and (3.8) and models

(3.7) and (3.8). If a model were perfect, the points should be close to the 45°

line shown.

Table 2 presents values of /, given by (3.9), for the one-time step ahead

prediction of variance; these values appear in the column iterative. Also

13



displayed are the values of / obtained by estimating the model parameters

once using all the data; this value of / is a measure of goodness-of-fit and

appears in the column labeled All; the estimates used in regressions with

covariates for the goodness-of-fit evaluation of / are those appearing for July

in Table 11 of Jacobs and Gaver (1992). The constant variance estimate using

all the data is the maximum likelihood estimate. The results for four models

are presented; constant variance models, one-variate models (3.6) and (3.7),

and the two-variate model (3.8).

Note that all of the iterative prediction values of / for the models with

covariates are larger than those for the constant variance goodness-of-fit

value; this suggests that the covariates have some predictive value.

The iterative prediction value of / for the one-variate model using r(f;t) is

greater than the goodness-of-fit value obtained by using parameters estimated

using all the data; this suggests that there is a systematic change in the model

parameter values over time. For the other regressions using covariates the

prediction values of / are smaller than their corresponding goodness-of-fit

values but not by much. The model that maximizes the prediction values of

/ is the two-variate model suggesting that both covariates have some

predictive value..

Figures 9 and 10 and Table 3 present results for models of the variance of

the first-guess error at 500 mb level using 500 mb first-guess covariates. The

implications of the results are similar to those of the 250 mb results. The

predictive ability of the recursively estimated two-variate model appears

somewhat greater at the 250 mb level than the 500 mb level; this conclusion is

based on the values of (1 2 - lc)/^c where 1 2 is the prediction value of / for the

two-variate model and l c is the goodness-of-fit value of / for the constant

variance model; the value of this fraction is larger for 250 mb than for 500 mb.

14



TABLE 2

VALUE OF LOG-LIKELIHOOD FIRST-GUESS COVARIATES, 250 mb

Data Model Iterative All

(Prediction) (Goodness-of-Fit)

u-wind Constant Variance

One-variate

-14,589.4 -14,516.5

r(f;t) -13,640.6 -14,474.7

slfit) -13,598.3 -13,575.5

Two-variate -13,599.5 -13,579.4

v-wind Constant Variance

One-variate

-14,429.1 -14,363.1

r(/;0 -13,389.2 -14,270.1

s(f;t) -13,388.4 -13,363.8

Two-variate -13,351.1 -13,329.6

TABLE 3

VALUE OF LOG-LIKELIHOOD FIRST-GUESS COVARIATES, 500 mb

Data Model Iterative All

(Prediction) (Goodness-of-Fit)

u-wind Constant Variance

One-variate

-11,237.3 -11,213.5

rtfit) -10,561.2 -11,176.8

s(f;t) -10,518.7 -10,499.6

Two-variate -10,520.0 -10,489.0

i>-wind Constant Variance

One-variate

-11,204.0 -11,160.9

rtfit) -10,431.0 -11,118.2

s(/;0 -10,423.0 -10,411.9

Two-variate -10,411.8 -10,393.3
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